Asam sering dikenali sebagai zat
berbahaya dan korosif. Hal ini benar untuk beberapa jenis asam yang digunakan
di laboratorium, seperti asam sulfat dan asam klorida. Tetapi asam yang tidak
berbahaya juga banyak ditemui dalam kehidupan sehari – hari. Misalnya pada cuka
dan buah – buahan. Seperti halnya asam, basa juga sering digunakan dalam
kehidupan sehari – hari. Misalnya dalam pasta gigi, deterjen, atau cairan
pembersih. Secara umum, asam dapat dikenali dari bau dan rasanya yang tajam /
asam. Sedangkan basa bersifat licin dan rasanya pahit. Bila diteteskan pada
kertas litmus, asam akan memberikan warna merah dan basa akan memberikan warna
biru. Teori – teori Asam Basa:
1. Teori
Arrhenius
Menurut Arrhenius (1884), asam adalah zat yang melepaskan ion H+ atau H3O+ dalam air. Sedangkan basa adalah senyawa yang melepas ion OH- dalam air.
HA + aq à H+(aq) + A-(aq)
BOH + aq à B+(aq) + OH-(aq)
Di dalam air, ion H+ tidak berdiri sendiri, melainkan membentuk ion dengan H2O.
H+ + H2O à H3O+ (ion hidronium)
Berdasarkan jumlah ion H+ yang dapat dilepaskan, asam dapat terbagi menjadi
Menurut Arrhenius (1884), asam adalah zat yang melepaskan ion H+ atau H3O+ dalam air. Sedangkan basa adalah senyawa yang melepas ion OH- dalam air.
HA + aq à H+(aq) + A-(aq)
BOH + aq à B+(aq) + OH-(aq)
Di dalam air, ion H+ tidak berdiri sendiri, melainkan membentuk ion dengan H2O.
H+ + H2O à H3O+ (ion hidronium)
Berdasarkan jumlah ion H+ yang dapat dilepaskan, asam dapat terbagi menjadi
·
Asam monoprotik à melepaskan 1 ion H+
Contoh : asam klorida (HCl)
HCl à H+(aq) + Cl-(aq)
Contoh : asam klorida (HCl)
HCl à H+(aq) + Cl-(aq)
·
Asam diprotik à melepaskan 2 ion H+
Contoh : asam sulfat (H2SO4)
H2SO4 à H+(aq) + HSO4-(aq)
HSO4- à H+(aq) + SO42-(aq)
Contoh : asam sulfat (H2SO4)
H2SO4 à H+(aq) + HSO4-(aq)
HSO4- à H+(aq) + SO42-(aq)
·
Asam triprotik à melepaskan 3 ion H+
Contoh : asam fosfat (H3PO4)
H3PO4 à H+(aq) + H2PO4-(aq)
H2PO4- à H+(aq) + HPO42-(aq)
HPO42- à H+(aq) + PO43-(aq)
Contoh : asam fosfat (H3PO4)
H3PO4 à H+(aq) + H2PO4-(aq)
H2PO4- à H+(aq) + HPO42-(aq)
HPO42- à H+(aq) + PO43-(aq)
Bila asam dan basa direaksikan,
maka produk yang akan terbentuk adalah senyawa netral (yang disebut garam) dan
air. Reaksi ini disebut sebagai reaksi pembentukan garam atau reaksi
penetralan, yang akan mengurangi ion H+ dan OH- serta menghilangkan sifat asam
dan basa dalam larutan secara bersamaan. Jika asam yang bereaksi dengan basa
adalah asam poliprotik, maka akan dihasilkan lebih dari satu jenis garam.
Misalnya pada rekasi antara NaOH dengan H2SO4.
NaOH + H2SO4 à NaHSO4 + H2O
NaHSO4 + NaOH à Na2SO4 + H2O
Senyawa NaHSO4 disebut sebagai garam asam, yaitu garam yang tebentuk dari penetralan parsial asam poliprotik. Garam asam bersifat asam, sehingga dapat bereaksi dengan basa membentuk produk garam lain yang netral dan air.
NaHSO4 + NaOH à Na2SO4 + H2O
Senyawa NaHSO4 disebut sebagai garam asam, yaitu garam yang tebentuk dari penetralan parsial asam poliprotik. Garam asam bersifat asam, sehingga dapat bereaksi dengan basa membentuk produk garam lain yang netral dan air.
2.
Teori Brönsted – Lowry
`Teori Arrhenius ternyata hanya berlaku pada larutan dalam air. Teori ini tidak dapat menjelaskan fenomena pada reaksi tanpa pelarut atau dengan pelarut bukan air. Pada tahun 1923, Brönsted – Lowry mengungkapkan bahwa sifat asam – basa ditentukan oleh kemempuan senyawa untuk melepas / menerima proton (H+). Menurut Brönsted – Lowry, asam adalah senyawa yang memberi proton (H+) kepada senyawa lain.
`Teori Arrhenius ternyata hanya berlaku pada larutan dalam air. Teori ini tidak dapat menjelaskan fenomena pada reaksi tanpa pelarut atau dengan pelarut bukan air. Pada tahun 1923, Brönsted – Lowry mengungkapkan bahwa sifat asam – basa ditentukan oleh kemempuan senyawa untuk melepas / menerima proton (H+). Menurut Brönsted – Lowry, asam adalah senyawa yang memberi proton (H+) kepada senyawa lain.
Contoh : HCl + H2O à H3O+ + Cl-
Sedangkan basa adalah senyawa yang menerima proton (H+) dari senyawa lain.
Contoh : NH3 + H2O à NH4+ + OH-
Dalam larutan, asam / basa lemah akan membentuk kesetimbangan dengan pelarutnya. Misalnya HF dalam pelarut air dan NH3 dalam air.
HF + H¬2O à H3O+ + F-
NH3 + H2O à NH4+ + OH-
Pasangan a1 – b2 dan a2 – b1 merupakan pasangan
asam – basa konjugasi.
Ø Asam konjugasi : asam yang terbentuk dari basa yang menerima proton
Ø Basa konjugasi : basa yang terbentuk dari asam yang melepas proton
Ø Asam konjugasi : asam yang terbentuk dari basa yang menerima proton
Ø Basa konjugasi : basa yang terbentuk dari asam yang melepas proton
Teori Brönsted – Lowry memperkenalkan adanya zat
yang dapat bersifat asam maupun basa, yang disebut sebagai zat amfoter.
Contohnya adalah air. Di dalam larutan basa, air akan bersifat asam dan
mengeluarkan ion positif (H3O+). Sedangkan dalam larutan asam, air akan
bersifat basa dan mengeluarkan ion negatif (OH-).
3.
Teori Lewis
Lewis mengelompokkan senaywa sebagai asam dan basa menurut kemampuannya melepaskan / menerima elektron. Menurut Lewis,
Asam : – senyawa yang menerima pasangan elektron
– senyawa dengan elektron valensi < 8
Basa : – senyawa yang mendonorkan pasangan elektron
– mempunyai pasangan elektron bebas
Contoh : Reaksi antara NH3 dan BF3
H3N : + BF3 à H3NàBF3
Nitrogen mendonorkan pasangan elektron bebas kepada boron. Pasangan elektron bebas yang didonorkan ditandai dengan tanda panah antara atom nitrogen dan boron.
Lewis mengelompokkan senaywa sebagai asam dan basa menurut kemampuannya melepaskan / menerima elektron. Menurut Lewis,
Asam : – senyawa yang menerima pasangan elektron
– senyawa dengan elektron valensi < 8
Basa : – senyawa yang mendonorkan pasangan elektron
– mempunyai pasangan elektron bebas
Contoh : Reaksi antara NH3 dan BF3
H3N : + BF3 à H3NàBF3
Nitrogen mendonorkan pasangan elektron bebas kepada boron. Pasangan elektron bebas yang didonorkan ditandai dengan tanda panah antara atom nitrogen dan boron.
Kelebihan teori Lewis ini adalah dapat menjelaskan
reaksi penetralan yang dilakukan tanpa air. Misalnya pada reaksi antara Na2O
dan SO3. Menurut Arrhenius, reaksi penetralan ini harus dilakukan dalam air.
Na2O + H2O à 2 NaOH
SO3 + H2O à H2SO4
2 NaOH + H2SO4 à 2 H2O + Na2SO4
Na2O + H2O à 2 NaOH
SO3 + H2O à H2SO4
2 NaOH + H2SO4 à 2 H2O + Na2SO4
Teori Lewis memberikan penjelasan lain untuk
menjelaskan reaksi ini.
Na2O(s) + SO3(g) à Na2SO4(s)
2 Na+ + O2- à 2 Na+ + [ OàSO3 ]2-
Na2O(s) + SO3(g) à Na2SO4(s)
2 Na+ + O2- à 2 Na+ + [ OàSO3 ]2-
4.
Konsep pH
Air memiliki sedikit sifat elektrolit. Bila terurai, air akan membentuk ion H+ dan OH-. Kehadiran asam atau basa dalam air akan mengubah konsentrasi ion – ion tersebut. Untuk suatu larutan dalam air, didefinisikan pH dan pOH larutan untuk menunjukkan tingkat keasaman.
4.2.1 Derajat keasaman (pH) Asam / Basa Kuat
Penentuan pH asam / basa kuat dihitung dengan persamaan
pH = – log [H+]
pOH = – log [OH-]
Dalam satu liter air murni, terdapat ion H+ dan OH- dengan konsentrasi masing – masing 10-7 M. Sehingga, pH air murni adalah
pH = – log [10-7]
pH = 7
Hasil kali ion [H+] dan [OH-] dalam air selalu konstan, dan disebut tetapan air (Kw).
Kw = [H+] [OH-] = 10-14
pH + pOH = 14
Air memiliki sedikit sifat elektrolit. Bila terurai, air akan membentuk ion H+ dan OH-. Kehadiran asam atau basa dalam air akan mengubah konsentrasi ion – ion tersebut. Untuk suatu larutan dalam air, didefinisikan pH dan pOH larutan untuk menunjukkan tingkat keasaman.
4.2.1 Derajat keasaman (pH) Asam / Basa Kuat
Penentuan pH asam / basa kuat dihitung dengan persamaan
pH = – log [H+]
pOH = – log [OH-]
Dalam satu liter air murni, terdapat ion H+ dan OH- dengan konsentrasi masing – masing 10-7 M. Sehingga, pH air murni adalah
pH = – log [10-7]
pH = 7
Hasil kali ion [H+] dan [OH-] dalam air selalu konstan, dan disebut tetapan air (Kw).
Kw = [H+] [OH-] = 10-14
pH + pOH = 14
5.
Derajat keasaman (pH) Asam / Basa Lemah
Asam dan basa lemah hanya terurai sebagian dalam air.
Bila asam lemah terurai dalam air :
HA + H2O = H3O+ + A-
Tetapan kesetimbangan untuk asam lemah (Ka) dinyatakan sebagai :
Ka =
[H+] =
Nilai pH asam lemah dinyatakan sebagai:
pH = – log [H+]
M adalah nilai konsentrasi larutan yang akan ditentukan derajat keasamannya.
Asam dan basa lemah hanya terurai sebagian dalam air.
Bila asam lemah terurai dalam air :
HA + H2O = H3O+ + A-
Tetapan kesetimbangan untuk asam lemah (Ka) dinyatakan sebagai :
Ka =
[H+] =
Nilai pH asam lemah dinyatakan sebagai:
pH = – log [H+]
M adalah nilai konsentrasi larutan yang akan ditentukan derajat keasamannya.
Basa lemah terurai dalam air dengan reaksi
NH3 + H2O = NH4+ + OH-
Tetapan kesetimbangan untuk asam lemah (Ka) dinyatakan sebagai :
Kb =
[OH-] =
Nilai pOH basa lemah dinyatakan sebagai :
pOH = – log [OH-]
NH3 + H2O = NH4+ + OH-
Tetapan kesetimbangan untuk asam lemah (Ka) dinyatakan sebagai :
Kb =
[OH-] =
Nilai pOH basa lemah dinyatakan sebagai :
pOH = – log [OH-]
6.Larutan Penyangga (Buffer)
Bila suatu larutan mengandung asam dan basa lemah, larutan tersebut dapat menyerap penambahan sedikit asam / basa kuat. Penambahan asam kuat akan dinetralkan oleh basa lemah, sedangkan penambahan basa kuat akan dinetralkan oleh asam lemah. Larutan seperti ini disebut sebagai larutan penyangga atau larutan buffer. Pada umumnya, larutan penyangga merupakan pasangan asam – basa konjugasi yang dibuat dari asam / basa lemah dan garamnya. Contohnya asam asetat (CH3COOH) dan natrium asetat (CH3COONa). Ion asetat (CH3COO-) merupakan basa konjugat dari asam asetat. Untuk larutan penyangga, nilai pH dan pOH dinyatakan sebagai
pH = pKa + log
pOH = pKb + log
Bila suatu larutan mengandung asam dan basa lemah, larutan tersebut dapat menyerap penambahan sedikit asam / basa kuat. Penambahan asam kuat akan dinetralkan oleh basa lemah, sedangkan penambahan basa kuat akan dinetralkan oleh asam lemah. Larutan seperti ini disebut sebagai larutan penyangga atau larutan buffer. Pada umumnya, larutan penyangga merupakan pasangan asam – basa konjugasi yang dibuat dari asam / basa lemah dan garamnya. Contohnya asam asetat (CH3COOH) dan natrium asetat (CH3COONa). Ion asetat (CH3COO-) merupakan basa konjugat dari asam asetat. Untuk larutan penyangga, nilai pH dan pOH dinyatakan sebagai
pH = pKa + log
pOH = pKb + log
Contoh soal :
Suatu larutan penyangga dibuat dengan mencampurkan tepat 200mL 0,6M NH3 dan 300mL 0,3M NH4Cl. Jika volume diasumsikan tepat 500mL, berapa pH larutan tersebut ?
Suatu larutan penyangga dibuat dengan mencampurkan tepat 200mL 0,6M NH3 dan 300mL 0,3M NH4Cl. Jika volume diasumsikan tepat 500mL, berapa pH larutan tersebut ?
Jawab :
Jumlah mol NH3 dalam campuran = 0,6 mol/L x 0,2 L = 0,12 mol
Jumlah mol NH4+ dalam campuran = 0,3 mol/L x 0,3 L = 0,09 mol
Konsentrasi asam dan garam dalam larutan
[NH3] = M = 0,24 M
[NH4+] = M = 0,18 M
Karena larutan penyangga dibuat dari basa lemah dan garamnya, maka
pOH = pKb + log
pOH = 4,74 + log
pOH = 4,74 + log
pOH = 4,61
pH = 14 – 4,61 = 9,39
Larutan penyangga mempunyai peran yang besar dalam kehidupan. Salah satu contoh larutan penyangga adalah H2CO3 / HCO3- dalam darah, yang bertugas menjaga agar pH darah tetap netral.
Jumlah mol NH3 dalam campuran = 0,6 mol/L x 0,2 L = 0,12 mol
Jumlah mol NH4+ dalam campuran = 0,3 mol/L x 0,3 L = 0,09 mol
Konsentrasi asam dan garam dalam larutan
[NH3] = M = 0,24 M
[NH4+] = M = 0,18 M
Karena larutan penyangga dibuat dari basa lemah dan garamnya, maka
pOH = pKb + log
pOH = 4,74 + log
pOH = 4,74 + log
pOH = 4,61
pH = 14 – 4,61 = 9,39
Larutan penyangga mempunyai peran yang besar dalam kehidupan. Salah satu contoh larutan penyangga adalah H2CO3 / HCO3- dalam darah, yang bertugas menjaga agar pH darah tetap netral.
Tidak ada komentar:
Posting Komentar